SDLS167 - OCTOBER 1976 - REVISED MARCH 1988

- 'LS377 and 'LS378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
- 'LS379 Contains Four Flip-Flops with Double-Rail Outputs
- Individual Data Input to Each Flip-Flop
- Applications Include:

 Buffer/Storage Registers
 Shift Registers

 Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with an enable input. The 'LS377, 'LS378, and 'LS379 devices are similar to 'LS273, 'LS174, and 'LS175, respectively, but feature a common enable instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the enable input \overline{G} is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the \overline{G} input.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 MHz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts per flip-flop.

FUNCTION TABLE (EACH FLIP-FLOP)

(LACITEII TEOL)										
	INPUT	OUT	PUTS							
Ĝ	CLOCK	DATA	Q	ā						
Н	X	X	Q ₀	$\bar{\alpha}_0$						
L	t	н	н	L						
L	†	L	Ł.	н						
×	L	X	σ_0	$\overline{\alpha}_0$						

SN54LS378 . . . J OR W PACKAGE SN74LS378 . . . D OR N PACKAGE (TOP VIEW)

SN54LS378 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

logic symbols†

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

schematics of inputs and outputs

absolute maximum rating over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)							 	 				7 V
Input voltage							 	 				7 V
Operating free-air temperature range:	SN54LS'							 				-55°C to 125°C
	SN74LS'							 				. 0°C to 70°C
Storage temperature range												-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS	S'				
	MIN	NOM	MAX	MIN	NOM	MAX	TINU	
Supply voltage, VCC	4.5	5	5,5	4.75	5	5,25	٧	
High-level output current, IOH				-400			-400	μΑ
Low-level output current, IOL			4			8	mA	
Clock frequency, fclock		0		30	0		30	MHz
Width of clock pulse, t _W		20			20			ns
	Data input	201			201			
Setup time, t _{Su}	Enable active-state	251			251			ns
Enable inactive-state		101			101		***	1
Hold time, th	Data and enable	5t			51	`		ns
Operating free-air temperature, TA		-55		125	0		70	°C

[†]The arrow indicates that the rising edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS†				SN54LS	'						
	PANAMETER	TEST CONDITIONS.			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	VCC = MIN,	II = -18 mA				-1.5			-1,5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	$V_{1H} = 2 V$, $I_{OH} = -400 \mu\text{A}$		2.5	3.5		2.7	3.5		٧
VOL	Low-level output voltage	V _{CC} = MIN, V _{II} = V _{II} max	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	٧
t _i	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0,1			0,1	mA
ЧН	High-level input current	VCC = MAX,	V ₁ = 2.7 V				20			20	μΑ
IIL	Low-level input current	VCC = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
Ios	Short-circuit output current§	V _{CC} = MAX			-20		-100	-20		-100	mA
				'LS377		17	28		17	28	mA
1CC	Supply current	VCC = MAX,	See Note 2	'LS378		13	22		13	22	mΑ
				'LS379		9	15		9	15	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L = 15 pF,	30	40		MHz
tPLH Propagation delay time, low-to-high-level output from clock	$R_L = 2 k\Omega$		17	27	ns
tPHL Propagation delay time, high-to-low-level output from clock	See Note 3		18	27	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§] Note more than one input should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and ground applied to all data and enable inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.