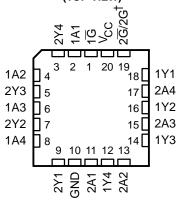
SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce DC Loading
- Hysteresis at Inputs Improves Noise Margins

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical, active-low output-control (\overline{G}) inputs, and complementary output-control (\overline{G} and \overline{G}) inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise margin. The SN74LS' and SN74S' devices can be used to drive terminated lines down to 133 Ω .


SN54LS', SN54S' . . . J OR W PACKAGE SN74LS240, SN74LS244 . . . DB, DW, N, OR NS PACKAGE SN74LS241 . . . DW, N, OR NS PACKAGE SN74S' . . . DW OR N PACKAGE

(TOP VIEW)

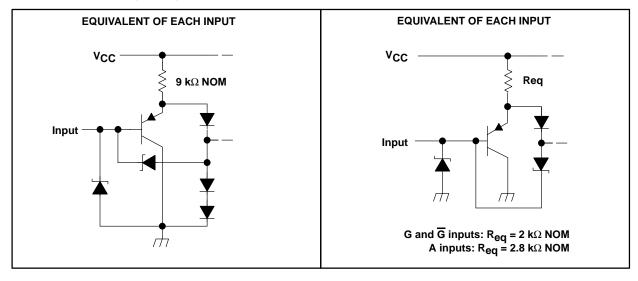
	•	,	
1 <mark>G</mark> [1	20	V _C C
1A1 [2	19	2G/2G†
2Y4 [1	18	1Y1
1A2 [17	2A4
2Y3 [16	1Y2
1A3 [2A3
2Y2 [7	14	1Y3
1A4 [8	13	2A2
2Y1 [9	12	1Y4
GND [10	11	2A1

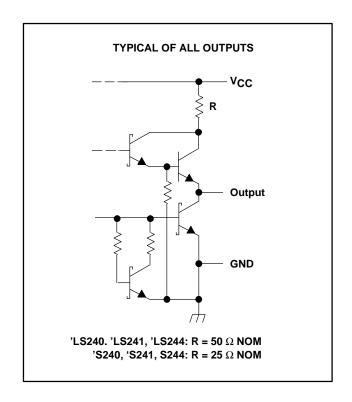
†2G for 'LS241 and 'S241 or 2G for all other drivers.

SN54LS', SN54S' . . . FK PACKAGE (TOP VIEW)

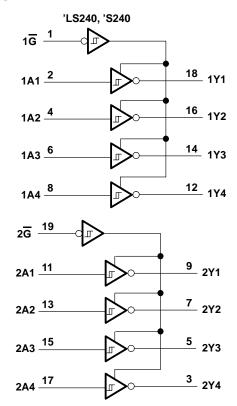
 \dagger 2G for 'LS241 and 'S241 or $2\overline{G}$ for all other drivers.

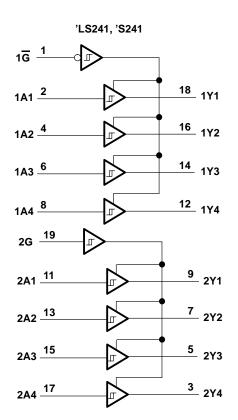
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

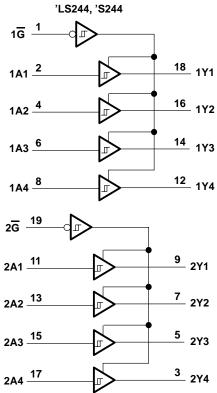



SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

schematics of inputs and outputs


'LS240, 'LS241, 'LS244


'S240, 'S241, 'S244



logic diagram

Pin numbers shown are for DB, DW, J, N, NS, and W packages.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		7 V
Input voltage, V _I : 'LS		
'S		5.5 V
Off-state output voltage		5.5 V
Package thermal impedance, θ _{JA} (see Note 2)	: DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
Storage temperature range, T _{sta}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54LS'				UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-12			-15	mA
loL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

NOTES: 1. Voltage values are with respect to network ground terminal.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER					SN54LS'						
PARAMETER	TEST CONDITIONS [†]		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT		
VIK	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V	
Hysteresis (V _{T+} – V _T –)	V _{CC} = MIN			0.2	0.4		0.2	0.4		٧	
VOH	$V_{CC} = MIN,$ $I_{OH} = -3 \text{ mA}$	V _{IH} = 2 V,	V _{IL} = MAX,	2.4	3.4		2.4	3.4		V	
VOH	$V_{CC} = MIN,$ $I_{OH} = MAX$	V _{IH} = 2 V,	V _{IL} = 0.5 V,	2			2			~	
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	$I_{OL} = 12 \text{ mA}$			0.4			0.4	0.4 V	
VOL.	V _{IL} = MAX		I _{OL} = 24 mA					-	0.5	V	
lozh	$V_{CC} = MAX,$ $V_{IL} = MAX$	V _{IH} = 2 V,	V _O = 2.7 V			20			20	μΑ	
l _{OZL}	$V_{CC} = MAX,$ $V_{IL} = MAX$	V _{IH} = 2 V,	V _O = 0.4 V			-20			-20	μΑ	
ΙĮ	$V_{CC} = MAX$,	V _I = 7 V				0.1			0.1	mA	
lιΗ	$V_{CC} = MAX$,	V _I = 2.7 V				20			20	μΑ	
IլL	$V_{CC} = MAX$,	$V_{IL} = 0.4 V$				-0.2			-0.2	mA	
l _{OS} §	$V_{CC} = MAX$,			-40		-225	-40		-225	mA	
		Outputs high	All		17	27		17	27		
	V _{CC} = MAX, Output open	Outputs low	'LS240		26	44		26	44		
lcc		Outputs 10W	'LS241, 'LS244		27	46		27	46	mA	
		Outputs disabled	'LS240		29	50		29	50		
		Outputs disabled	'LS241, 'LS244		32	54		32	54		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

DADAMETED	PARAMETER TEST CONDITIONS		'LS240			'LS2	UNIT		
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	P 667.0	0 45 = 5		9	14		12	18	nc
^t PHL	$R_L = 667 \Omega$,	$C_L = 45 pF$		12	18		12	18	ns
t _{PZL}	D 007.0	0. 45.5		20	30		20	30	ns
^t PZH	$R_L = 667 \Omega$,	$C_{L} = 45 \text{ pF}$		15	23		15	23	115
^t PLZ	D. 667.0	D. 667.0 C. 5.75		10	20		10	20	ns
^t PHZ	$R_L = 667 \Omega$,	C _L = 5 pF		15	25		15	25	115

 $[\]stackrel{+}{\sim}$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

recommended operating conditions

		SN54S'				UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			8.0	V
ЮН	High-level output current			-12			-15	mA
loL	Low-level output current			48			64	mA
	External resistance between any input and V _{CC} or ground			40			40	kΩ
TA	Operating free-air temperature (see Note 3)	-55		125	0		70	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

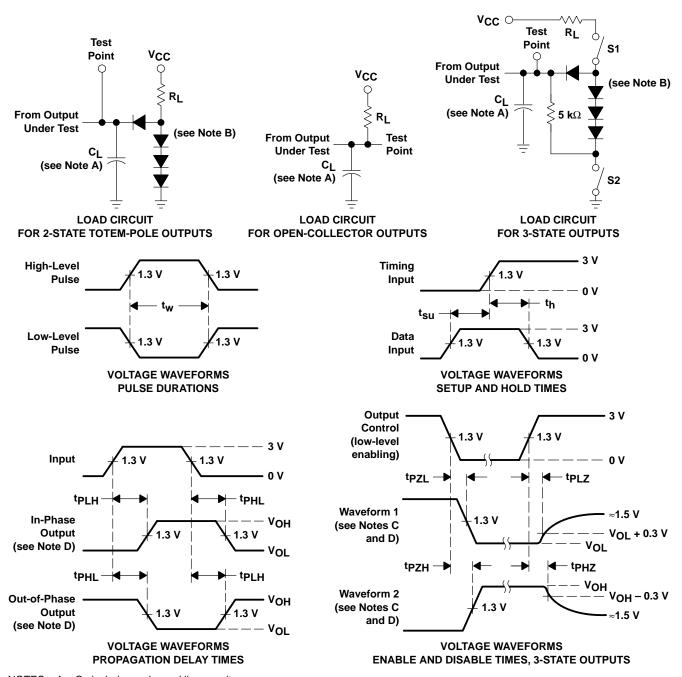
24244555					SN54S'					
PARAMETER		TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	V
Hysteresis (V _{T+} – V _T –)	V _{CC} = MIN			0.2	0.4		0.2	0.4		٧
	$V_{CC} = MIN$ $I_{OH} = -1 \text{ mA}$	V _{IH} = 2 V,	V _{IL} = 0.8 V,				2.7			
VOH	$V_{CC} = MIN,$ $I_{OH} = -3 \text{ mA}$	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		V
	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	$V_{IL} = 0.5 V,$	2			2			
VOL	V _{CC} = MIN, I _{OL} = MAX	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.55			0.55	٧
lozh	V _{CC} = MAX, V _{IL} = 0.8 V	V _{IH} = 2 V,	V _O = 2.4 V			50			50	μА
lozL	V _{CC} = MAX, V _{IL} = 0.8 V	V _{IH} = 2 V,	V _O = 0.5 V			– 50			-50	μА
lį	$V_{CC} = MAX$,	V _I = 5.5 V				1			1	mA
lіН	$V_{CC} = MAX$,	V _I = 2.7 V				50			50	μΑ
IIL	V _{CC} = MAX,	V _I = 0.5 V	Any A			-400			-400	μΑ
	VCC = WAX,	V = 0.5 V	Any G			-2			-2	mA
I _{OS} §	$V_{CC} = MAX$			-50		-225	-50		-225	mA
		Outputs high	'S240		80	123		80	135	
V		Outputs riigir	'S241,'S244		95	147		95	160	
	$V_{CC} = MAX,$	Outputs low	'S240		100	145		100	150	mA
lcc	Output open	Outputs low	'S241, 'S244		120	170		120	180	
		Outputs disabled	'S240		100	145		100	150	
		Outputs disabled	'S241, 'S244		120	170		120	180	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

An SN54S241J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from case to free air, R_{θCA}, of not more that 40°C/W.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 2)

PARAMETER	TEST CO	'S240			'S2	UNIT			
PARAMETER	1231 00	TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNII
t _{PLH}	R ₁ = 90 Ω,	0 50 -5		4.5	7		6	9	ns
^t PHL	NC = 90 22,	C _L = 50 pF		4.5	7		6	9	115
tPZL	P 00 O	= 90 Ω , C_L = 50 pF		10	15		10	15	ns
^t PZH	NC = 90 32,			6.5	10		8	12	115
t _{PLZ}	P 00 O	$R_L = 90 \Omega$, $C_L = 5 pF$		10	15		10	15	ns
t _{PHZ}	N_ = 90 22,			6	9		6	9	115

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

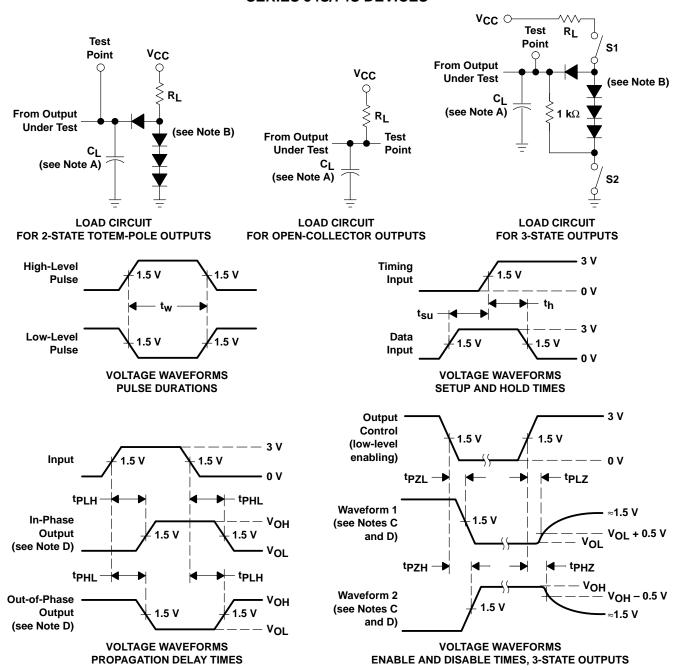
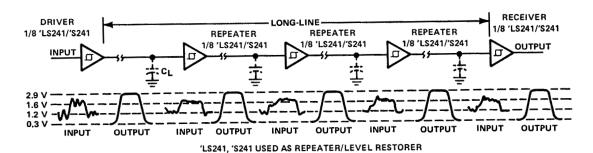

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$, $t_f \leq$ 15 ns, $t_f \leq$ 6 ns.
 - G. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION **SERIES 54S/74S DEVICES**



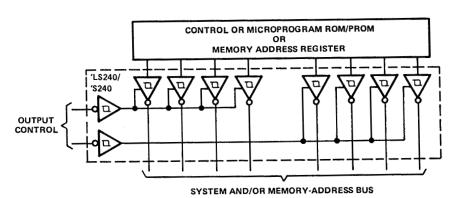
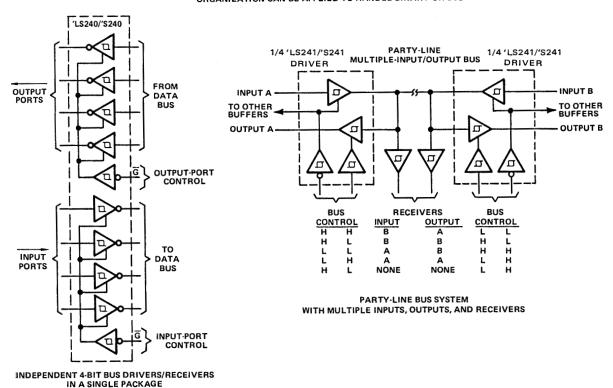

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms



APPLICATION INFORMATION

'LS240/'S240 USED AS SYSTEM AND/OR MEMORY BUS DRIVER-4-BIT ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

