74F251A 8-Input Multiplexer with 3-STATE Outputs

FAIRCHILD

SEMICONDUCTOR

74F251A 8-Input Multiplexer with 3-STATE Outputs

General Description

The 74F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting 3-STATE outputs

Ordering Code:

Order Number	Package Number	Package Description
74F251ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F251ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F251APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS009504

www.fairchildsemi.com

74F251A

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
S ₀ -S ₂	Select Inputs	1.0/1.0	20 µA/–0.6 mA	
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
I ₀ —I ₇	Multiplexer Inputs	1.0/1.0	20 µA/–0.6 mA	
Z	3-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)	
Z	Complementary 3-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)	

Functional Description

Truth Table

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both assertion and negation outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

 $Z = \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 +$ $\mathsf{I}_2 \bullet \overline{\mathsf{S}}_0 \bullet \mathsf{S}_1 \bullet \overline{\mathsf{S}}_2 + \mathsf{I}_3 \bullet \mathsf{S}_0 \bullet \mathsf{S}_1 \bullet \overline{\mathsf{S}}_2 + \\$ $I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 +$ $\mathsf{I}_6 \bullet \overline{\mathsf{S}}_0 \bullet \mathsf{S}_1 \bullet \mathsf{S}_2 + \mathsf{I}_7 \bullet \mathsf{S}_0 \bullet \mathsf{S}_1 \bullet \mathsf{S}_2)$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

	Inp	Out	puts		
OE	S ₂	S ₁	S ₀	z	Z
Н	Х	Х	Х	Z	Z
L	L	L	L	Ī	I ₀
L	L	L	н	Ī ₁	I ₁
L	L	Н	L	l ₂	I_2
L	L	н	н	Ī ₃	l ₃
L	н	L	L	Ī4	I_4
L	н	L	н	\overline{I}_5	I_5
L	н	н	L	Ī ₆	I ₆
L	н	н	н	Ī ₇	I ₇

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

0°C to +70°C

+4.5V to +5.5V

74F251A

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

in LOW State (Max) twice the rated I_{OL} (mA)

O week at	Bananatan			T	Maria	Line Mar	v	O a mallitha ma
Symbol	Parameter		wiin	тур	wax	Units	V CC	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA}$
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
IIH	Input HIGH				E O	A	Ман	V 0.7V
	Current				5.0	μΑ	IVIAX	$v_{IN} = 2.7 v$
I _{BVI}	Input HIGH Current				7.0		Мох	$y_{-} = 7.0 y_{-}$
	Breakdown Test				7.0	μΑ	IVIAX	v _{IN} = 7.0v
ICEX	Output HIGH				50		Ман	
	Leakage Current				50	μΑ	IVIAX	V _{OUT} = V _{CC}
V _{ID}	Input Leakage		4 75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				2 75		0.0	V _{IOD} = 150 mV
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μA	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V
I _{CCL}	Power Supply Current			15	22	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			16	24	mA	Max	V _O = HIGH Z

www.fairchildsemi.com

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_A = -55^{\circ}C$	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		T _A = 0°C to +70°C	
					$V_{CC} = 5.0V$		$V_{CC} = 5.0V$		11-11-
			$C_L = 50 \text{ pF}$			$C_L = 50 \text{ pF}$		$C_L = 50 \ pF$	
		Min	Тур	Max	Min	Мах	Min	Max	1
t _{PLH}	Propagation Delay	3.5	6.0	9.0	3.5	11.5	3.5	9.5	-
t _{PHL}	S_n to \overline{Z}	3.2	5.0	7.5	3.2	8.0	3.2	7.5	115
t _{PLH}	Propagation Delay	4.5	7.5	10.5	3.5	14.0	4.5	12.5	
t _{PHL}	S _n to Z	4.0	6.0	8.5	3.0	10.5	4.0	9.0	ns
t _{PLH}	Propagation Delay	3.0	5.0	6.5	2.5	8.0	3.0	7.0	
t _{PHL}	I_n to Z	1.5	2.5	4.0	1.5	6.0	1.5	5.0	ns
t _{PLH}	Propagation Delay	3.5	5.0	7.0	2.5	9.0	2.5	8.0	
t _{PHL}	I _n to Z	3.5	5.5	7.0	3.5	9.0	3.5	7.5	ns
t _{PZH}	Output Enable Time	2.5	4.3	6.0	2.0	7.0	2.5	7.0	
t _{PZL}	OE to Z	2.5	4.3	6.0	2.5	7.5	2.5	6.5	
t _{PHZ}	Output Disable Time	2.5	4.0	5.5	2.5	6.0	2.5	6.0	ns
t _{PLZ}	OE to Z	1.5	3.0	4.5	1.5	5.0	1.5	4.5	
t _{PZH}	Output Enable Time	3.5	5.0	7.0	3.0	8.5	3.0	7.5	
t _{PZL}	OE to Z	3.5	5.5	7.5	3.5	9.0	3.5	8.0	
t _{PHZ}	Output Disable Time	2.0	3.8	5.5	2.0	5.5	2.0	5.5	ns
tpi 7	OE to Z	1.5	3.0	4.5	1.5	55	15	45	