74F14 Hex Inverter Schmitt Trigger

FAIRCHILD

SEMICONDUCTOR TM

74F14 Hex Inverter Schmitt Trigger

General Description

The 74F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feed back to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code:

Fackage Number	Package Description					
M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow					
M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
	M14A M14D N14A					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

	Din Nomoo	Description	U.L.	Input I _{IH} /I _{IL}		
ľ	riii Nailles	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
Γ	I _n	Input	1.0/1.0	20 µA/–0.6 mA		
	\overline{O}_n	On Output		–1 mA/20 mA		

Function Table

Input	Output
А	ō
L	Н
н	L

H = HIGH Voltage Level L = LOW Voltage Level

© 2000 Fairchild Semiconductor Corporation DS009461

www.fairchildsemi.com

74F14

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	–55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{T+}	Positive-Going Threshold		1.5	1.7	2.0	V	5.0V	
V _{T-}	Negative-Going Threshold		0.7	0.9	1.1	V	5.0V	
ΔV_T	Hysteresis (V _{T+} -V _{T-})		0.4	0.8		V	5.0V	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	l = 20 m∆
	Voltage				0.5	v	IVIIII	$I_{OL} = 20 \text{ IIIA}$
I _{IH}	Input HIGH				5.0		Max	1/ = 2.71/.
	Current				5.0	μΛ	IVIAX	v _{IN} = 2.7 v
I _{BVI}	Input HIGH Current				7.0		Max	$V_{0} = 7.0 V_{0}$
	Breakdown Test				7.0	μΛ	IVIAX	VIN - 7.0V
I _{CEX}	Output HIGH				50		Max	V
	Leakage Current				50	μΛ	IVIAX	VOUT - VCC
V _{ID}	Input Leakage		4.75			V	Max	I _{ID} = 1.9 μA
	Test		4.75			v	Max	All Other Pins Grounded
I _{OD}	Output Leakage				3 75		0.0	V _{IOD} = 150 mV
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit Currer	nt	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CCH}	Power Supply Current				25	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current				25	mA	Max	$V_0 = LOW$

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	4.0	10.5	4.0	13.0	4.0	11.5	ne
t _{PHL}	I _n →Ō n	3.5	8.5	3.5	10.0	3.5	9.0	115

www.fairchildsemi.com