

April 1988 Revised September 2000

74F273 Octal D-Type Flip-Flop

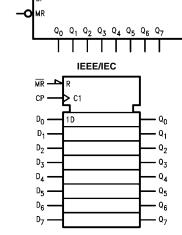
General Description

The 74F273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\text{MR}}$) inputs load and reset (clear) all flip-flops simultaneously.

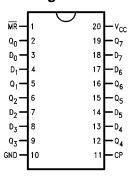
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the \overline{MR} input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Features

- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D-type flip-flops
- Buffered common clock
- Buffered, asynchronous Master Reset
- See 74F377 for clock enable version
- See 74F373 for transparent latch version
- See 74F374 for 3-STATE version


Ordering Code:

Order Number	Package Number	Package Description
74F273SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F273PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

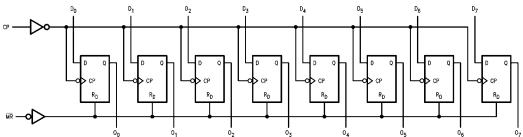
D₃ D₄ D₅ D₆ D₇

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW Outp		
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
MR	Master Reset (Active LOW)	1.0/1.0	20 μA/-0.6 mA	
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA	
Q ₀ -Q ₇	Data Outputs	50/33.3	-1 mA/20 mA	


Mode Select-Function Table

		Inputs					
Operating Mode	MR	СР	D _n	Q _n			
Reset (Clear)	L	Х	Х	L			
Load "1"	Н	~	h	Н			
Load "0"	Н		I	L			

- H = HIGH Voltage Level steady state
 h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
 L = LOW Voltage Level steady state
- I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition
- X = Immaterial

 = LOW-to-HIGH clock transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

gs(Note 1) Recommended Operating Conditions

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

 $\begin{array}{lll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \\ \mbox{Input Voltage (Note 2)} & -0.5\mbox{V to } +7.0\mbox{V} \\ \end{array}$

Input Voltage (Note 2) -0.5V to +7.0V
Input Current (Note 2) -30 mA to +5.0 mA
Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{ll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{3-STATE Output} & -0.5 \text{V to +5.5 V} \end{array}$

Current Applied to Output

 $\label{eq:lower_lower} \begin{array}{ll} \text{in LOW State (Max)} & \text{twice the rated I}_{\text{OL}} \text{ (mA)} \\ \text{ESD Last Passing Voltage (min)} & 4000 \text{V} \end{array}$

Free Air Ambient Temperature $0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$ Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	$5\% V_{CC}$	2.7			V	IVIIII	IOH — — I IIIA
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	1 - 20 mA
	Voltage	$5\% V_{CC}$			0.5	V	IVIIII	I _{OL} = 20 mA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				3.0	μΛ	IVIAX	VIN - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIAX	VIN = 7.0V
I _{CEX}	Output HIGH				50	μА	Max	V -V
	Leakage Current				50	μА	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.73			V	0.0	All other pins grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μΛ	0.0	All other pins grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current				44	mA	Max	CP = _
I _{CCL}					56	IIIA	IVIAX	$D_n = \overline{MR} = HIGH$

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = 5.0$ V $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	160			95		130		MHz	
t _{PLH}	Propagation Delay	3.0		7.0	2.5	9.5	2.5	7.5	ne	
t _{PHL}	Clock to Output	4.0		9.00	3.0	11.0	3.5	9.0	ns	
t _{PLH}	Propagation Delay	4.5		9.5	3.0	11.0	4.0	10.0	ns	
t _{PHL}	MR to Output	4.5	4.5	9.5	3.0	3.0 11.0	4.0 10.0	10.0	115	

AC Operating Requirements

Symbol	Parameter	$T_A = +25$ °C $V_{CC} = +5.0V$		$T_A = -55$ °C to +125°C $V_{CC} = 5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = 5.0V$		Units	
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5		3.0			
t _S (L)	Data to CP	3.5		4.0		3.5			
t _H (H)	Hold Time, HIGH or LOW	0.5		1.0		0.5		ns	
t _H (L)	Data to CP	1.0		1.0		1.0			
t _W (L)	MR Pulse Width, LOW	6.0		4.0		6.0		ns	
t _W (H)	CP Pulse Width	6.0		5.0		6.0			
$t_W(L)$	HIGH or LOW	6.0		5.0		6.0		ns	
t _{REC}	Recovery Time, MR to CP	3.0		4.5		3.5		ns	