

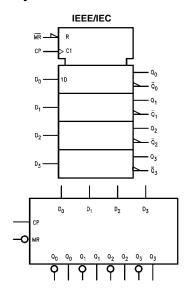
April 1988 Revised September 2000

74F175 Quad D-Type Flip-Flop

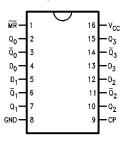
General Description

The 74F175 is a high-speed quad D-type flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, LOW.

Features


- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- Asynchronous common reset
- True and complement output

Ordering Code:


Order Number	Package Number	Package Description
74F175SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F175PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

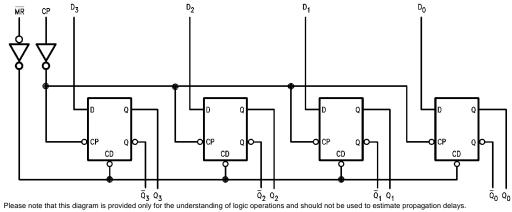
Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ -D ₃	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA	
MR	Master Reset Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA	
$Q_0 - Q_3$	True Outputs	50/33.3	−1 mA/20 mA	
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	50/33.3	−1 mA/20 mA	

Functional Description


The 74F175 consists of four edge-triggered D-type flipflops with individual D inputs and Q and \overline{Q} outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and $\overline{\mathbb{Q}}$ outputs to follow. A LOW input on the Master Reset (\overline{MR}) will force all Q outputs LOW and \overline{Q} outputs HIGH independent of Clock or Data inputs. The 74F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Truth Table

	Inputs	Outputs			
MR CP		D _n	Q_n	$\overline{\mathbf{Q}}_{\mathbf{n}}$	
L	Х	Х	L	Н	
Н	~	Н	Н	L	
Н	~	L	L	Н	

H = HIGH Voltage Level

Logic Diagram

L = LOW Voltage Level

X = Immaterial

^{✓ =} LOW-to-HIGH Clock Transition

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias $-55^{\circ}C$ to $+150^{\circ}C$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0V

-30 mA to +5.0 mA

Input Current (Note 2) Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} -0.5V to +5.5V

3-STATE Output

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	$5\% V_{CC}$	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
	Voltage				0.5	V	IVIIII	10L - 20 IIIA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				3.0	μΛ	IVIAX	V IN - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIGA	V _{IN} = 7.0 V
I _{CEX}	Output HIGH				50	μА	Max V _C	V _{OUT} = V _{CC}
	Leakage Current				30	μΛ	IVIGA	v001 − vCC
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.73			V	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μΛ	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CC}	Power Supply Current			22.5	34.0	mA	Max	CP = _
								$D_n = \overline{MR} = HIGH$

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	140		80		100		MHz
t _{PLH}	Propagation Delay	4.0	5.0	6.5	3.5	8.5	4.0	7.5	
t_{PHL}	CP to Q _n or Q _n	4.0	6.5	8.5	4.0	10.5	4.0	9.5	ns
t _{PHL}	Propagation Delay MR to Q _n	4.5	9.0	11.5	4.5	15.0	4.5	13.0	ns
t _{PLH}	Propagation Delay MR to Qn	4.0	6.5	8.0	4.0	10.0	4.0	9.0	ns

AC Operating Requirements

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		3.0		
$t_S(L)$	D _n to CP	3.0		3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		1.0		
$t_H(L)$	D _n to CP	1.0		2.0		1.0		
t _W (H)	CP Pulse Width	4.0		4.0		4.0		ns
$t_W(L)$	HIGH or LOW	5.0		5.0		5.0		115
t _W (L)	MR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{REC}	Recovery Time, MR to CP	5.0		5.0		5.0		ns